本文提议使用修改的完全连接层转移初始化,以进行1900诊断。卷积神经网络(CNN)在图像分类中取得了显着的结果。但是,由于图像识别应用程序的复杂性,培训高性能模型是一个非常复杂且耗时的过程。另一方面,转移学习是一种相对较新的学习方法,已在许多领域使用,以减少计算来实现良好的性能。在这项研究中,Pytorch预训练的模型(VGG19 \ _bn和WideresNet -101)首次在MNIST数据集中应用于初始化,并具有修改的完全连接的层。先前在Imagenet中对使用的Pytorch预培训模型进行了培训。提出的模型在Kaggle笔记本电脑中得到了开发和验证,并且在网络培训过程中没有花费巨大的计算时间,达到了99.77%的出色精度。我们还将相同的方法应用于SIIM-FISABIO-RSNA COVID-19检测数据集,并达到80.01%的精度。相比之下,以前的方法在训练过程中需要大量的压缩时间才能达到高性能模型。代码可在以下链接上找到:github.com/dipuk0506/spinalnet
translated by 谷歌翻译
在插值方面,我们为平滑损失(可能是非lipschitz,可能是非convex)提供了急剧依赖路径依赖的概括和多余的风险保证。我们分析的核心是确定性对称算法绑定的新的概括误差,这意味着平均输出稳定性和终止时有界的预期优化误差导致概括。该结果表明,沿着优化路径发生小的概括误差,并使我们能够绕过Lipschitz或以前作品中普遍存在的损失的假设。对于非convex,polyak-lojasiewicz(PL),凸面和强烈凸丢失,我们在累积的路径依赖性优化误差,终端优化误差,样本数量和迭代数方面显示了概括误差的明确依赖性。 For nonconvex smooth losses, we prove that full-batch GD efficiently generalizes close to any stationary point at termination, under the proper choice of a decreasing step size.此外,如果损失是非convex但目标是PL,我们将在概括误差和相应的多余风险上四次消失,以选择大型常数步长大小。对于(分别 - 强 - )凸平的平滑损失,我们证明,全批GD还概括了较大的恒定步骤尺寸,并且在快速训练的同时,(分别是四次)的多余风险。在所有情况下,我们通过显示匹配的概括和优化错误率来缩小概括误差差距。当损失平稳时(但可能是非lipschitz)时,我们的全批GD概括误差和多余的风险界限严格比(随机)GD的现有范围更紧密。
translated by 谷歌翻译
本文提出和评估了一种用于脑电图(EEG)信号分类的基于新的基于实例的方法。 EEG信号的非静止性质,与具有有限培训数据的苛刻的模式识别以及潜在的嘈杂的信号采集条件相结合,并且具有潜在的嘈杂的信号采集条件,这是在本研究中报告的工作。所提出的自适应模板增强机制通过单独处理每个特征维度来改变特征级实例,因此导致改进的类别分离和更好的查询类匹配。将提出的基于实例的学习算法与许多情况下的一些相关算法进行了比较。使用单个干燥传感器的低成本系统获得的临床级64电极EEG数据库以及使用低成本系统获得的低质量(高噪声水平)EEG数据库已用于生物识别人员识别中的评估。所提出的方法在识别和验证方案中表明了显着提高的分类准确性。特别是,看到这种新方法可以为嘈杂的EEG数据提供良好的分类性能,表明其适用于各种应用的可能性。
translated by 谷歌翻译
展示了在欧洲生物安全卓越网络框架内设计和获取的新的多模态生物识别数据库。它由600多个个人在三种情况下在三种情况下获得:1)在互联网上,2)在带台式PC的办公环境中,以及3)在室内/室外环境中,具有移动便携式硬件。这三种方案包括音频/视频数据的共同部分。此外,已使用桌面PC和移动便携式硬件获取签名和指纹数据。此外,使用桌面PC在第二个方案中获取手和虹膜数据。收购事项已于11名欧洲机构进行。 BioSecure多模式数据库(BMDB)的其他功能有:两个采集会话,在某些方式的几种传感器,均衡性别和年龄分布,多式化现实情景,每种方式,跨欧洲多样性,人口统计数据的可用性,以及人口统计数据的可用性与其他多模式数据库的兼容性。 BMDB的新型收购条件允许我们对单币或多模式生物识别系统进行新的具有挑战性的研究和评估,如最近的生物安全的多模式评估活动。还给出了该活动的描述,包括来自新数据库的单个模式的基线结果。预计数据库将通过2008年通过生物安全协会进行研究目的
translated by 谷歌翻译
大多数自治车辆都配备了LIDAR传感器和立体声相机。前者非常准确,但产生稀疏数据,而后者是密集的,具有丰富的纹理和颜色信息,但难以提取来自的强大的3D表示。在本文中,我们提出了一种新的数据融合算法,将准确的点云与致密的,但不太精确的点云组合在立体对。我们开发一个框架,将该算法集成到各种3D对象检测方法中。我们的框架从两个RGB图像中的2D检测开始,计算截肢和它们的交叉点,从立体声图像创建伪激光雷达数据,并填补了LIDAR数据缺少密集伪激光器的交叉区域的部分要点。我们训练多个3D对象检测方法,并表明我们的融合策略一致地提高了探测器的性能。
translated by 谷歌翻译
文献中的许多研究已经显示出出于身份验证目的的移动设备上生物识别技术的潜力。但是,已经表明,与生物识别系统相关的学习过程可能会暴露有关受试者的敏感个人信息。这项研究提出了Gaitprivacyon,这是一种新型的移动步态生物识别验证方法,可提供准确的身份验证结果,同时保留受试者的敏感信息。它包括两个模块:i)卷积自动编码器,该卷积自动编码器将生物识别原始数据的属性(例如性别或正在执行的活动)转换为新的隐私表示表示; ii)基于卷积神经网络(CNN)和复发性神经网络(RNN)与暹罗结构的相结合的移动步态验证系统。 Gaitprivacyon的主要优点是,第一个模块(卷积自动编码器)以无监督的方式进行了训练,而无需指定主题的敏感属性以保护。使用两个流行数据库(Motionsense和MobiACT)实现的实验结果表明,Gaitprivacyon有可能显着改善受试者的隐私,同时保持用户身份验证结果高于曲线下99%的面积(AUC)。据我们所知,这是第一种移动步态验证方法,它考虑了以无监督方式培训的隐私方法。
translated by 谷歌翻译
使用超越欧几里德距离的神经网络,深入的Bregman分歧测量数据点的分歧,并且能够捕获分布的发散。在本文中,我们提出了深深的布利曼对视觉表现的对比学习的分歧,我们的目标是通过基于功能Bregman分歧培训额外的网络来提高自我监督学习中使用的对比损失。与完全基于单点之间的分歧的传统对比学学习方法相比,我们的框架可以捕获分布之间的发散,这提高了学习表示的质量。我们展示了传统的对比损失和我们提出的分歧损失优于基线的结合,并且最先前的自我监督和半监督学习的大多数方法在多个分类和对象检测任务和数据集中。此外,学习的陈述在转移到其他数据集和任务时概括了良好。源代码和我们的型号可用于补充,并将通过纸张释放。
translated by 谷歌翻译